Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(7): e2315069121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38315851

ABSTRACT

A key step in drug discovery, common to many disease areas, is preclinical demonstration of efficacy in a mouse model of disease. However, this demonstration and its translation to the clinic can be impeded by mouse-specific pathways of drug metabolism. Here, we show that a mouse line extensively humanized for the cytochrome P450 gene superfamily ("8HUM") can circumvent these problems. The pharmacokinetics, metabolite profiles, and magnitude of drug-drug interactions of a test set of approved medicines were in much closer alignment with clinical observations than in wild-type mice. Infection with Mycobacterium tuberculosis, Leishmania donovani, and Trypanosoma cruzi was well tolerated in 8HUM, permitting efficacy assessment. During such assessments, mouse-specific metabolic liabilities were bypassed while the impact of clinically relevant active metabolites and DDI on efficacy were well captured. Removal of species differences in metabolism by replacement of wild-type mice with 8HUM therefore reduces compound attrition while improving clinical translation, accelerating drug discovery.


Subject(s)
Communicable Diseases , Drug Discovery , Mice , Animals , Drug Interactions , Disease Models, Animal , Cytochrome P-450 Enzyme System/metabolism , Acceleration
2.
J Med Chem ; 66(15): 10413-10431, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37506194

ABSTRACT

There is an urgent need for new treatments for Chagas disease, a parasitic infection which mostly impacts South and Central America. We previously reported on the discovery of GSK3494245/DDD01305143, a preclinical candidate for visceral leishmaniasis which acted through inhibition of the Leishmania proteasome. A related analogue, active against Trypanosoma cruzi, showed suboptimal efficacy in an animal model of Chagas disease, so alternative proteasome inhibitors were investigated. Screening a library of phenotypically active analogues against the T. cruzi proteasome identified an active, selective pyridazinone, the development of which is described herein. We obtained a cryo-EM co-structure of proteasome and a key inhibitor and used this to drive optimization of the compounds. Alongside this, optimization of the absorption, distribution, metabolism, and excretion (ADME) properties afforded a suitable compound for mouse efficacy studies. The outcome of these studies is discussed, alongside future plans to further understand the series and its potential to deliver a new treatment for Chagas disease.


Subject(s)
Chagas Disease , Leishmaniasis, Visceral , Trypanocidal Agents , Trypanosoma cruzi , Mice , Animals , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Proteasome Endopeptidase Complex , Chagas Disease/drug therapy , Chagas Disease/parasitology , Leishmaniasis, Visceral/drug therapy , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanocidal Agents/chemistry
3.
RSC Med Chem ; 13(12): 1587-1604, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36561069

ABSTRACT

The synthesis and evaluation of twenty six new phenylurea substituted 2,4-diamino-pyrimidines against Plasmodium falciparum (Pf) 3D7 are reported. Compounds were prepared to improve both anti-malarial activity and selectivity of the series previously reported by our group. Additional properties have been determined to assess their potential as anti-malarial leads including; HepG2 cytotoxicity, solubility, permeability, and lipophilicity, as well as in vitro stability in human and rat microsomes. We also assess their inhibition profile against a diverse set of 10 human kinases. Molecular docking, cheminformatics and bioinformatics analyses were also undertaken. Compounds 40 demonstrated the best anti-malarial activity at Pf 3D7 (0.09 µM), good selectivity with respect to mammalian cytotoxicity (SI = 54) and low microsomal clearance. Quantitative structure activity relationship (QSAR) analyses point to lipophilicity being a key driver of improved anti-malarial activity. The most active compounds in the series suffered from high lipophilicity, poor aqueous solubility and low permeability. The results provide useful information to guide further chemistry iterations.

4.
Bioorg Med Chem ; 46: 116348, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34479064

ABSTRACT

Twenty eight new N2,N4-diphenylpyrimidine-2,4-diamines have been prepared in order to expand our understanding of the anti-malarial SAR of the scaffold. The aim of the study was to make structural modifications to improve the overall potency, selectivity and solubility of the series by varying the anilino groups attached to the 2- and 4-position. We evaluated the activity of the compounds against Plasmodium falciparum (Pf) 3D7, cytotoxicity against HepG2, % inhibition at a panel of 10 human kinases, solubility, permeability and lipophilicity, and human and rat in vitro clearance. 11 was identified as a potent anti-malarial with an IC50 of 0.66 µM at the 3D7 strain and a selectivity (SI) of ~ 40 in terms of cytotoxicity against the HepG2 cell line. It also displayed low experimental logD7.4 (2.27), reasonable solubility (124 µg/ml), good metabolic stability, but low permeability. A proteo-chemometric workflow was employed to identify putative Pf targets of the most promising compounds. Ligand-based similarity searching of the ChEMBL database led to the identification of most probable human targets. These were then used as input for sequence-based searching of the Pf proteome. Homology modelling and molecular docking were used to evaluate whether compounds could indeed bind to these targets with valid binding modes. In vitro biological testing against close human analogs of these targets was subsequently undertaken. This allowed us to identify potential Pf targets and human anti-targets that could be exploited in future development.


Subject(s)
Antimalarials/pharmacology , Cheminformatics , Diamines/pharmacology , Enzyme Inhibitors/pharmacology , Phosphotransferases/antagonists & inhibitors , Plasmodium falciparum/drug effects , Pyrimidines/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Diamines/chemical synthesis , Diamines/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Hep G2 Cells , Humans , Molecular Structure , Parasitic Sensitivity Tests , Phosphotransferases/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
5.
Bioorg Chem ; 115: 105215, 2021 10.
Article in English | MEDLINE | ID: mdl-34358799

ABSTRACT

Global health concern regarding malaria has increased since the first report of artemisinin-resistant Plasmodium falciparum (Pf) two decades ago. The current therapies suffer various drawbacks such as low efficacy and significant side effects, alarming for an urgent need of more effective and less toxic drugs with higher patient compliance. Chemical entities with natural origins become progressively attractive as new drug leads due to their structural diversity and bio-compatibility. This study initially aimed at the targeted isolation of hydroxyquinoline derivatives following our published genomics and metabolomics study of Pantoea agglomerans (Pa). Fermentation of Pa on a pre-selected medium followed by chromatographic isolation, NMR and HRMS analyses led to the characterisation of one new hydroxyquinoline alkaloid together with another six known congeners and two known hydroxyquinolone derivatives. When screened for their antimalarial activity by high throughput screening against asexual blood-stage parasites, almost all compounds showed potent and selective sub-micromolar activities. Computational investigation was performed to identify the antiplasmodial potential targets. Ligand-based similarity search predicted the tested compounds to act as hemozoin inhibitors. Computational target identification results were further validated by competitive hemozoin inhibitory properties of hydroxyquinoline and hydroxyquinolone derivatives in vitro. The overall results suggest this natural scaffold is of potential to be developed as antimalarial drug lead.


Subject(s)
Alkaloids/pharmacology , Antimalarials/pharmacology , Pantoea/chemistry , Plasmodium falciparum/drug effects , Alkaloids/chemistry , Alkaloids/isolation & purification , Antimalarials/chemistry , Antimalarials/isolation & purification , Dose-Response Relationship, Drug , Humans , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship
6.
Front Oncol ; 9: 734, 2019.
Article in English | MEDLINE | ID: mdl-31475102

ABSTRACT

Carcinoma showing thymus-like elements (CASTLE) is a rare tumor, most commonly found in the thyroid gland. Here we report a case of CASTLE tumor localized to the parotid gland, recognized in retrospect after a late manifestation of symptomatic pleural carcinomatosis. The original tumor in the parotid gland was treated by surgery followed by radiotherapy. Ten years later, a metastatic disease with recurrent pleural effusions occurred. Pleural carcinomatosis was strongly positive for CD5, CD117, and p63 as was the original tumor of the parotid, which allowed the diagnosis of a CASTLE tumor. Additionally, the pleural tumor expressed high levels of programmed death ligand 1 (PD-L1), and the patient underwent treatment with the monoclonal PD-L1 inhibitor pembrolizumab achieving a partial remission. To the best of our knowledge, this is the first patient with a metastatic CASTLE tumor treated with a PD-L1 inhibitor.

7.
Bull Cancer ; 94(9): 753-62, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17878094

ABSTRACT

The approval in 2004 of bevacizumab (Avastin), a neutralizing monoclonal antibody directed against vascular endothelial growth factor (VEGF) as the first anti-angiogenic systemic drug to treat cancer patients validated the notion introduced 33 years earlier by Dr. Judah Folkman, that inhibition of tumor angiogenesis might be a valid approach to control tumor growth. Anti-angiogenic therapy was greeted in the clinic a major step forward in cancer treatment. At the same time this success recently boosted the field to the quest for new anti-angiogenic targets and drugs. In spite of this success, however, some old questions in the field have remained unanswered and new ones have emerged. They include the identification for surrogate markers of angiogenesis and anti-angiogenesis, the understanding about how anti-angiogenic therapy and chemotherapy synergize, the characterization of the biological consequences of sustained suppression of angiogenesis on tumor biology and normal tissue homeostasis, and the mechanisms of tumor escape from anti-angiogenesis. In this review we summarize some of these outstanding questions, and highlight future challenges in clinical, translational and experimental research in anti-angiogenic therapy that need to be addressed in order to improve current treatments and to design new drugs.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Angiogenesis Inhibitors/adverse effects , Angiogenic Proteins/antagonists & inhibitors , Angiogenic Proteins/physiology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Combined Modality Therapy , Drug Delivery Systems , Drug Resistance, Neoplasm , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/physiology , Neoplasms/blood supply , Neovascularization, Pathologic/etiology , Treatment Outcome
8.
Expert Rev Anticancer Ther ; 6(8): 1187-204, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16925485

ABSTRACT

Temozolomide (Temodal, Temodar), an imidazol derivative, is a second-generation alkylating agent. The orally available prodrug with the capacity of crossing the blood-brain barrier received accelerated US FDA approval in 1999. Three pivotal Phase II trials showed modest activity in the treatment of recurrent anaplastic astrocytoma glioblastoma. In 2005, the FDA and the European Agency for the Evaluation of Medicinal Products approved temozolomide for use in newly diagnosed glioblastoma, in conjunction with radiotherapy, based on an European Organisation for Research and Treatment of Cancer/National Cancer Institute of Canada Phase III trial. The adverse events associated with temozolomide are mild-to-moderate and generally predictable; the most serious are noncumulative and reversible myelosuppression and, in particular, thrombocytopenia, which occurs in less than 5% of patients. Continuous temozolomide administration is associated with profound CD4-selective lymphocytopenia. Molecular studies have suggested that the benefit of temozolomide chemotherapy is restricted to patients whose tumors have a methylated methylguanine methyltransferase gene promotor and are thus unable to repair some of the chemotherapy-induced DNA damage. Temozolomide is under investigation for other disease entities, in particular lower-grade glioma, brain metastases and melanoma.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Dacarbazine/analogs & derivatives , Glioma/drug therapy , Base Pair Mismatch , Clinical Trials, Phase II as Topic , Dacarbazine/chemistry , Dacarbazine/pharmacokinetics , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Dacarbazine/toxicity , Humans , Recurrence , Temozolomide
SELECTION OF CITATIONS
SEARCH DETAIL
...